
swift-browser-ui
Release 2.0.0

CSC Developers

Mar 02, 2022

CONTENTS:

1 Setup Instructions 3
1.1 Environment Setup . 3
1.2 Scaling up the service . 5
1.3 Further reading and citations . 5

2 Getting started 7
2.1 Command line interface . 7

3 Deployment 9
3.1 Dockerfile . 9
3.2 Database for sharing functionality . 9
3.3 Sharing functionality back-end . 9
3.4 Shared access request back-end . 10
3.5 Upload runner back-end . 10
3.6 Kubernetes Integration . 11

4 Architecture 13
4.1 About login process . 13
4.2 API . 13

5 Web User Interface 15
5.1 User information page . 15
5.2 Container page . 15
5.3 Object page . 15
5.4 Non-whitelisted mode . 16

6 Sharing functionality 17
6.1 Sharing a container . 17
6.2 Viewing containers shared from the project . 17
6.3 Viewing containers shared to the project . 18

7 Shared access requests 19

8 Upload runnner 21
8.1 File Upload . 21
8.2 File Download . 21
8.3 Container Download . 22
8.4 Copying a container . 22

9 Python Modules 23
9.1 swift_browser_ui.ui._convenience . 23

i

9.2 swift_browser_ui.ui.api . 24
9.3 swift_browser_ui.ui.discover . 24
9.4 swift_browser_ui.ui.exceptions . 25
9.5 swift_browser_ui.ui.front . 25
9.6 swift_browser_ui.ui.login . 25
9.7 swift_browser_ui.ui.middlewares . 25
9.8 swift_browser_ui.ui.misc_handlers . 26
9.9 swift_browser_ui.ui.server . 26
9.10 swift_browser_ui.ui.settings . 26
9.11 swift_browser_ui.ui.shell . 27
9.12 swift_browser_ui.ui.signature . 27
9.13 swift_browser_ui.sharing.bindings.bind . 28
9.14 swift_browser_ui.sharing.api . 28
9.15 swift_browser_ui.sharing.db . 28
9.16 swift_browser_ui.sharing.server . 29
9.17 swift_browser_ui.sharing.shared . 29
9.18 swift_browser_ui.request.bindings.bind . 29
9.19 swift_browser_ui.request.api . 29
9.20 swift_browser_ui.request.db . 30
9.21 swift_browser_ui.request.server . 30
9.22 swift_browser_ui.upload.api . 31
9.23 swift_browser_ui.upload.auth . 31
9.24 swift_browser_ui.upload.common . 31
9.25 swift_browser_ui.upload.download . 32
9.26 swift_browser_ui.upload.replicate . 32
9.27 swift_browser_ui.upload.server . 32
9.28 swift_browser_ui.upload.upload . 33

10 Testing 35
10.1 Unit Testing . 35
10.2 User Interface Testing . 35

11 Tools used in project 37
11.1 Backend . 37
11.2 Frontend . 37
11.3 Tests . 38
11.4 Documentation . 38

12 Indices and tables 39

Python Module Index 41

Index 43

ii

swift-browser-ui, Release 2.0.0

A Web UI object browser for object storage back-ends using Openstack Keystone for authentication (e.g. CSC Pouta).
It uses federated login via HAKA, via the endpoints provided by OpenStack Keystone.

Out of the box the swift-browser-ui offers:

• UI for browsing SWIFT objects;

• support for additional features like uploading files >5GiB in size;

• support for federated authentication of an user with their HAKA credentials using OpenStack Keystone;

• UI based on Vue.js with Buefy framework;

• asynchronous web server.

CONTENTS: 1

https://docs.csc.fi/cloud/pouta/
https://rr.funet.fi/haka/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/swift/latest/
https://vuejs.org/
https://buefy.org

swift-browser-ui, Release 2.0.0

2 CONTENTS:

CHAPTER

ONE

SETUP INSTRUCTIONS

The program can be installed with pip from the git repository:

Requires python >= 3.6 (recommended >= 3.7)
git clone git@github.com:CSCfi/swift-browser-ui.git
Frontend files need to be separately built
cd swift_browser_ui_frontend && npm run build && cd ..
pip install .

Note: The program uses external services that need to be present in order to enable all functionality, like sharing. These
additional services can be found from the git repositories. The instructions for getting the services up and running can
be found in their respective repositories, and partly under the Deployment section.

• https://github.com/cscfi/swift-x-account-sharing

• https://github.com/cscfi/swift-sharing-request

• https://github.com/cscfi/swiftui-upload-runner

1.1 Environment Setup

Hint: The command line arguments can also be configured as environment variables, the environment variable syntax
is documented in the python click documentation1 , the shape of a variable could take the following forms:

• BROWSER_$ARGUMENT - affects every command;

• BROWSER_$SUBCOMMAND_$ARGUMENT - affects subcommands e.g. start, install.

Variables are depicted in the table below:
1 https://click.palletsprojects.com/en/7.x/options/#values-from-environment-variables

3

https://github.com/cscfi/swift-x-account-sharing
https://github.com/cscfi/swift-sharing-request
https://github.com/cscfi/swiftui-upload-runner
https://click.palletsprojects.com/en/7.x/options/#values-from-environment-variables

swift-browser-ui, Release 2.0.0

Environment variable De-
fault

Description

BROWSER_START_AUTH_ENDPOINT_URL URL to use as the Openstack authentication backend
BROWSER_START_PORT 8080 Port that the service will listen
BROWSER_START_SET_ORIGIN_ADDRESS Authentication return address to which WebSSO should

redirect
BROWSER_START_HAS_TRUST Flag if the program is listed on the trusted_dashboards
BROWSER_START_SHARING_ENDPOINT_URL external URL for the container sharing backend
BROWSER_START_REQUEST_ENDPOINT_URL external URL for the shared access request backend
BROWSER_START_RUNNER_ENDPOINT internal URL for the upload, copy, download runner
SWIFT_UI_SHARING_REQUEST_TOKEN Token for signing the internal sharing & request API re-

quests
BROWSER_START_RUNNER_EXT_ENDPOINT external URL for the upload runner service
BROWSER_START_SHARING_INT_ENDPOINT_URL internal URL / hostname of the sharing API
BROWSER_START_REQUEST_INT_ENDPOINT_URL internal URL / hostname of the request API
LOG_LEVEL set logging level e.g. INFO, DEBUG

Hint: Authentication endpoint can also be specified with any openrc file, which can be usually downloaded from
Openstack. The setup script from Openstack might ask for your password, but this isn’t a required input and can be left
empty.

1.1.1 Example environment variable files

For the Pouta test environment with NGINX TLS termination proxy in use:

export BROWSER_START_AUTH_ENDPOINT_URL="https://pouta-test.csc.fi:5001/v3"
export BROWSER_START_PORT="8081"
export BROWSER_START_SET_ORIGIN_ADDRESS="https://vm1950.kaj.pouta.csc.fi:8080/login/
→˓websso"

For the Pouta production environment for testing unsecurely without trust:

export BROWSER_START_AUTH_ENDPOINT_URL="https://pouta.csc.fi:5001/v3"

1.1.2 Setting up TLS termination proxy

The backend can be run in secure mode, i.e. with HTTPS enabled, but for scaling up a TLS termination proxy is
recommended. Setting up TLS termination is outside the scope of this documentation, but a few useful links are
provided along with the necessary configs regarding this service.23

2 https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
3 https://docs.nginx.com/nginx/admin-guide/security-controls/terminating-ssl-http/

4 Chapter 1. Setup Instructions

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://docs.nginx.com/nginx/admin-guide/security-controls/terminating-ssl-http/

swift-browser-ui, Release 2.0.0

1.2 Scaling up the service

The service runs in a single-threaded mode, since the library that’s used for providing the back-end isn’t multi-threaded.
Therefore to completely use up a server’s resources a multi-processed approach must be chosen. The easiest way to do
this is to set up a reverse proxy, which can be run in the same server that acts as the TLS endpoint.

The aiohttp documentation already gives us directions for the set-up4 so they won’t be provided here. In its current state
the project should be configured to use TCP sockets in NGINX, so they’re the directions to use in the aforementioned
link. Also change the server run command to enable running the project as follows:

command=swift-browser-ui start --port=808%(process_num)s

1.3 Further reading and citations

4 http://docs.aiohttp.org/en/stable/deployment.html

1.2. Scaling up the service 5

http://docs.aiohttp.org/en/stable/deployment.html

swift-browser-ui, Release 2.0.0

6 Chapter 1. Setup Instructions

CHAPTER

TWO

GETTING STARTED

Note: Please note that the things related to project development aren’t documented here, and everything on this page
is only related to the running of the program

After the setup has been completed as illustrated in Setup Instructions the server can be used with the
swift-browser-ui command, the command line options can be found below.

2.1 Command line interface

The project has a command line interface, that can be used to quickly test the frontend for different endpoints and usage
cases. It provides basic functionality e.g. starting the server and specify a variety of different settings, detailed below:

swift-browser-ui --help
Usage: swift-browser-ui [OPTIONS] COMMAND [ARGS]...

Command line interface for managing swift-browser-ui.

Options:
--version Show the version and exit.
-v, --verbose Increase program verbosity.
-D, --debug Enable debug level logging.
--logfile TEXT Write program logs to a file.
--help Show this message and exit.

Commands:
start Start the browser backend and server.

2.1.1 Global arguments

The following command line arguments affect all of the commands in the application:

--verbose Flag to increase program verbosity.

--debug Enable program debug messages.

--logfile FILE Save all program output to a file.

--help Help on the CLI usage.

--version Display the program version

7

swift-browser-ui, Release 2.0.0

2.1.2 The server startup

The following command line arguments are available for server startup.

swift-browser-ui start --help
Usage: swift-browser-ui start [OPTIONS]

Start the browser backend and server.

Options:
-p, --port INTEGER Set the port the server is run on.
--auth-endpoint-url TEXT Endpoint for the Openstack keystone API in use.
--has-trust Flag if the program is listed on the

trusted_dashboards in the specified address.
--set-origin-address TEXT Set the address that the program will be

redirected to from WebSSO
--secure Enable secure running, i.e. enable HTTPS.
--ssl-cert-file TEXT Specify the certificate to use with SSL.
--ssl-cert-key TEXT Specify the certificate key to use with SSL.
--help Show this message and exit.

--port PORT Set the port that the server will use.

--auth-endpoint-url URL REQUIRED – Set the endpoint that the program uses for authentication.
The program cannot work without this.

--set-origin-address TEXT Set the address that the program will be redirected to from WebSSO.

--has-trust Toggle if the program has trust on the specified authentication endpoint, i.e. if the
program has been listed on the respective Openstack keystone trusted_dashboard
list.1

--secure Enable HTTPS on the server, to enable secure requests if there’s no TLS termina-
tion proxy.

--ssl-cert-file TEXT Specify SSL certificate file. Required when running in secure mode.

--ssl-cert-key TEXT Specify SSL certificate key. Required when running in secure mode.

1 https://docs.openstack.org/keystone/pike/advanced-topics/federation/websso.html

8 Chapter 2. Getting started

https://docs.openstack.org/keystone/pike/advanced-topics/federation/websso.html

CHAPTER

THREE

DEPLOYMENT

The recommended means of deployment for a production web server via a container image (e.g. Docker image). In
this section we illustrate several means of building and running a the swift-browser-ui application via a Docker
container image.

3.1 Dockerfile

Using vanilla docker in order to build the image - the tag can be customised:

$ git clone https://github.com/CSCfi/swift-browser-ui/
$ docker build -t cscfi/swift-ui .
$ docker run -p 8080:8080 cscfi/swift-ui
$ # or with environment variables
$ docker run -p 8080:8080 \

-e BROWSER_START_AUTH_ENDPOINT_URL=https://pouta.csc.fi:5001/v3 \
cscfi/swift-ui

3.2 Database for sharing functionality

Both swift-x-account-sharing and swift-sharing-request services need access to a PostgreSQL database in
order to work. In a usual deployment this is done within a containerized stack. Necessary files to build a database
container for testing can be found in the deployment example repository. The file init-project-db.sh contains the
necessary input to build the DB schema, and the same commands can be used to build the schema into an existing
database server (as is the case when running on openshift using a base image for the database)

3.3 Sharing functionality back-end

Sharing functionality should be run by running it in a container. Easiest way to do this is to use the docker-compose
fields provided in the deployment example repository. The sharing functionality requires the following environment
variables to be present in order to work:

9

https://github.com/CSCfi/swift-ui-deployment/
https://github.com/CSCfi/swift-ui-deployment/

swift-browser-ui, Release 2.0.0

Environment variable Default Re-
quired

Description

SWIFT_UI_API_AUTH_TOKENS True Comma separated list of master tokens that can be used for sign-
ing the API requests

SHARING_DB_NAME swift-
sharing

Name for the sharing functionality database

SHARING_DB_USER sharing User used in connecting to the sharing functionality database
SHARING_DB_HOST True Sharing functionality database address/hostname
SHARING_DB_PASSWORD True Sharing functionality database password

3.4 Shared access request back-end

Shared access request functionality should be run by running it in a container. Easiest way to do this is to use the
docker-compose files provided in the deployment example repository. The shared access request functionality requires
the following environment variables to be present in order to work:

Environment variable Default Re-
quired

Description

SWIFT_UI_API_AUTH_TOKENS True Comma separated list of master tokens that can be used for sign-
ing the API requests

REQUEST_DB_NAME swiftre-
quest

Name for the shared access request functionality database

REQUEST_DB_USER request User used in connecting to the shared access request functionality
database

REQUEST_DB_HOST True Shared access request functionality database address/hostname
REQUEST_DB_PASSWORD True Shared access request functionality database password

3.5 Upload runner back-end

SwiftUI upload runner should be run by running it in a container. Easiest way to do this is to use the docker-compose
files provided in the deployment example repository. The upload runner requires the following environment variables
to be present in order to work:

Environment variable De-
fault

Re-
quired

Description

SWIFT_UI_API_AUTH_TOKENS True Comma separated list of master tokens that can be used for signing the
API requests

BROWSER_START_AUTH_ENDPOINT_URL Openstack keystone endpoint for authentication – can also be specified
with OS_AUTH_URL

OS_AUTH_URL Openstack keystone endpoint for authentication – can also be specified
with BROWSER_START_AUTH_ENDPOINT_URL

The authentication information can also be gotten through sourcing any Openstack credential v3 file, the password is
not necessary as only the authentication endpoint information will be used.

10 Chapter 3. Deployment

https://github.com/CSCfi/swift-ui-deployment/
https://github.com/CSCfi/swift-ui-deployment/

swift-browser-ui, Release 2.0.0

3.6 Kubernetes Integration

For use with Kubernetes we provide YAML configuration. Further configuration files are provided in deployment exam-
ple repository

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
role: swiftui

name: swiftui
namespace: swiftui

spec:
selector:
matchLabels:
app: swiftui

template:
metadata:
labels:
app: swiftui
role: swiftui

spec:
containers:
- image: cscfi/swift-ui
imagePullPolicy: Always
name: swiftui
ports:
- containerPort: 8080
name: swiftui
protocol: TCP

apiVersion: v1
kind: Service
metadata:
name: swiftui
labels:
app: swiftui

spec:
type: NodePort
ports:
- port: 8080
targetPort: 8080
protocol: TCP
name: web

selector:
app: swiftui

3.6. Kubernetes Integration 11

https://github.com/CSCfi/swift-ui-deployment/
https://github.com/CSCfi/swift-ui-deployment/

swift-browser-ui, Release 2.0.0

12 Chapter 3. Deployment

CHAPTER

FOUR

ARCHITECTURE

In this section we would like to emphasize some of the core parts of the application and describe their inner-workings.

4.1 About login process

The program uses the WebSSO support provided by Openstack, whenever the support has been implemented. At
minimum the program requires the Openstack instance that it’s supposed to be used with to implement the federated
authentication, in which the non-WebSSO token delivery method can be used.

A collection of links to provide a recap of the things necessary to know about Openstack WebSSO implementation:

• Federated authentication API in Openstack

• WebSSO details conveniently explained (or how it works in the OS Horizon dashboard)

• Openstack Horizon dashboard WebSSO guide

The login process follows an almost ordinary process of federated authentication with SAML, but that is something we
don’t need to concern ourselves with – Openstack identity API takes care of that. The manual version works in much
the same way, but the user is required to copy and paste the token themselves, since Openstack refuses to redirect to
untrusted platforms.

Fig. 1: Sequence diagram of the login process.

4.2 API

Hint: The API has several endpoints, which are documented here. The API can also be used with the convenience
functions, located in the api.js file.

Note: All API queries expect an open session to Openstack, which meas the queries towards Openstack are correctly
scoped to the open project without further information in the API query. This of course requires a valid session token
to be present with every API call.

The following flowchart gives a generic image of the possible responses from the API during normal usage.

The api is documented in the api.yml file, that conforms to the OpenAPI specification (the file can be rendered with
the swagger editor):

13

https://www.openstack.org/
https://docs.openstack.org/keystone/pike/advanced-topics/federation/federated_identity.html
http://www.gazlene.net/demystifying-keystone-federation.html
https://docs.openstack.org/keystone/pike/advanced-topics/federation/websso.html
https://editor.swagger.io/?url=https://raw.githubusercontent.com/CSCfi/swift-browser-ui/master/docs/_static/api.yml

swift-browser-ui, Release 2.0.0

Fig. 2: Flowchart of the simplified API execute routes upon query.

14 Chapter 4. Architecture

CHAPTER

FIVE

WEB USER INTERFACE

The user interface defaults to a container listing, showing all the containers for the default active project of the user.
The localization can be changed from the button in the up-right corner.

5.1 User information page

Behind the User information button in the front page, a user information dashboard is displayed. The dashboard
displays statistics about the current resource usage, e.g.

• Current billing unit consumption

• Amount of containers and objects in a project

• Total project data usage.

Additional information on different billing details is also provided, in the links contained in the dashboard bottom tile.

Fig. 1: Image of the user information dashboard in an example project.

5.2 Container page

The default front-page for the browser is the container listing, which will default to the first project that Openstack
proposes. This page shows the containers available to be browsed, as well as general information about them. The
container can be opened with a double-click, or if the table row’s active, enter.

Fig. 2: Image of the container listing for an example project.

5.3 Object page

Any container can be opened, and the contents viewed. The object page shows information on the objects, e.g.

• The object name

• The object ETag

• A download link for the object

• Content type

15

swift-browser-ui, Release 2.0.0

• Last date of modification

Fig. 3: Image of the object listing for an example container.

Additional information is not shown by default, but can be opened with the chevron located in the beginning of each
row.

Fig. 4: Image of the object listing, showing the additional details.

5.4 Non-whitelisted mode

When running a development environment that is not whitelisted to use the WebSSO for logins, the following login page
will be displayed. The page is there to enable manual token delivery, since the server refuses to deliver it automatically
to untrusted platforms. (i.e. copying and pasting the token)

Fig. 5: Image of the manual token delivery login page.

16 Chapter 5. Web User Interface

CHAPTER

SIX

SHARING FUNCTIONALITY

The UI provides a simple way of sharing containers between different projects, provided you know the project that
requests sharing. (If not, see the documentation on sharing requests)

6.1 Sharing a container

A container can be shared from the “share” button in the UI, on the row of the container in the container listing. Clicking
the button takes one to the container sharing view, in which the user needs to specify the project/projects the container
is going to be shared to, and what rights to give. The view also contains a button to synchronize any requests for
accessing the container, if any are present. In case the user doesn’t want these requests fulfilled, they can be removed
from the tags that are inputted into the sharing view.

Fig. 1: Image of the container sharing view for an example container

6.2 Viewing containers shared from the project

Containers that have been shared from a particular project can be viewed by navigating to the “Shared” page in the appli-
cation navbar. From this view the shared access can be revoked, a new share initiated, or existing access synchronized
to the sharing back-end, thus enabling it to be queried from the back-end in the future.

17

swift-browser-ui, Release 2.0.0

Fig. 2: Image of the view listing containers shared from the project

6.3 Viewing containers shared to the project

Containers that are shared to a particular project can be viewed by navigating to the “Shared” page in the application
navbar. From this view the granted access can be viewed, and any container can be opened just like when using the
normal container browsing view. All features available in the ordinary container view work, such as downloading,
uploading (if write access is granted to the container) and copying the container.

Fig. 3: Image of the view listing containers shared to the project

18 Chapter 6. Sharing functionality

CHAPTER

SEVEN

SHARED ACCESS REQUESTS

The UI provides the possibility to request access to a container from a known project, which can be done via the shared
access request page. This can be found under the “Shared” page in the navbar.

Fig. 1: Image of the container access request page

19

swift-browser-ui, Release 2.0.0

20 Chapter 7. Shared access requests

CHAPTER

EIGHT

UPLOAD RUNNNER

The UI provides an improved upload proxy / runner, that provides a possibility for more complicated operations not
normally present on the object storage Web interface – these operations include e.g. uploading files into an object
storage container, and downloading a whole container with API call.

8.1 File Upload

Files can be uploaded to an automatically generated container by drag’n’drop from the container listing page, or by
using the upload button on top of the table. There’s no limit on how large the files uploaded can be, but browser
performance puts a practical limit somewhere in the neighborhood of 10GiB.

Uploading files to a specific container can be done by opening the container, and uploading while the container is open.
This can again be done either by drag’n’drop or using the upload button.

Hint: If complete relative file paths or folder structure is to be preserved, the only option for uploading is drag’n’drop.
Only files can be uploaded using the upload button

Hint: Chrome is recommended as the browser of choice when uploading large files, as the File API on Chrome is
better implemented. Firefox tends to have issues on files >5GiB, especially with multiple files. Safari is not supported,
but should work without problems – same issues present with Firefox apply.

Hint: Mobile devices are not supported for file uploads, but can work. This is, however, not guaranteed.

8.2 File Download

The upload runner is used to provide file downloads form shared containers in a similar manner to the way the downloads
work from containers owned by the project that is currently active. To the user the download continues to be a simple
download link

21

swift-browser-ui, Release 2.0.0

8.3 Container Download

Full containers can be downloaded from the UI using the download button either on the table row in the container
listing, or a download button on the top of the table when viewing an open container. Downloading whole containers
works the same in both owned and shared containers. The runner archives the container while the download is taking
place, in order to prevent additional waiting for an archiving operation to finish. This has the added benefit of not
requiring any intermediary storage for the archiving operation on the server side.

Hint: Due to the fact that the archive size can’t be precisely calculated when archiving on the fly, the server is unable
to provide a progress bar for a container download. A rough estimate can be generated by calculating the time value
from the container size visible in the container listing using the available speed of the connection.

8.4 Copying a container

Containers can be copied using the copy button, either on the row of the container in the container listing view, or on
top of the table when viewing a specific container. The copy operation can only be performed to a fresh container, to
prevent accidental data loss in case of an incomplete copy operation on an object. User can also copy a shared container
to the currently activated project.

Hint: The copy operation takes a long time, and is run in the background. The UI navigates back to the normal view
after copying is initiated. Thus, the copy operation is eventually consistent.

Hint: The runner validates every copied object against the file checksum present in the object storage backend – thus,
if the object is present in the newly created container, it’s guaranteed to have been successfully copied over.

Fig. 1: Image of the container replication page when trying to copy over an existing container

22 Chapter 8. Upload runnner

CHAPTER

NINE

PYTHON MODULES

Swift Browser UI ui module.

swift_browser_ui.ui._convenience Miscallaneous convenience functions used during the
project.

swift_browser_ui.ui.api Project functions for handling API requests from front-
end.

swift_browser_ui.ui.discover Endpoints for different server information discovery.
swift_browser_ui.ui.exceptions The module containing all swift_browser_ui exceptions.
swift_browser_ui.ui.front Web frontend functions for stand-alone running.
swift_browser_ui.ui.login A module for handling the project login related tasks.
swift_browser_ui.ui.middlewares Middlewares for the swift-browser-ui.
swift_browser_ui.ui.misc_handlers Handlers that can't easily be categorized.
swift_browser_ui.ui.server swift_browser_ui server related convenience functions.
swift_browser_ui.ui.settings Module containing all of the settings required in the

global scope.
swift_browser_ui.ui.shell CLI for configuring and launching the server.
swift_browser_ui.ui.signature Module for handling queries for a valid Sharing/Request

API signature.

9.1 swift_browser_ui.ui._convenience

Miscallaneous convenience functions used during the project.

Module contains funcions for e.g. authenticating against openstack v3 identity API, cache manipulation, cookies etc.

Functions

disable_cache(response) Add cache disabling headers to an aiohttp response.
get_availability_from_token(token, client) List available domains and projects for the unscoped to-

ken specified.
get_tempurl_key(request) Get the correct temp URL key from Openstack.
open_upload_runner_session(request) Open an upload session to the token.
sign(valid_for, path) Perform a general signature.
test_swift_endpoint(endpoint) Test swift endpoint connectivity.

23

swift-browser-ui, Release 2.0.0

9.2 swift_browser_ui.ui.api

Project functions for handling API requests from front-end.

Functions

add_project_container_acl(request) Add access for a project in container acl.
get_access_control_metadata(request) Fetch a compilation of ACL information for sharing dis-

covery.
get_os_user(request) Fetch the session owning OS user.
get_shared_container_address(request) Get the project specific object storage address.
get_upload_session(request) Return a pre-signed upload runner session for upload tar-

get.
os_list_projects(request) Fetch the projects available for the open session.
remove_container_acl(request) Remove all allowed projects from container acl.
remove_project_container_acl(request) Remove access from a project in container acl.
swift_batch_update_object_metadata(request) Update metadata for an object.
swift_create_container(request) Create a new container from name.
swift_delete_container(request) Delete an empty container or batch delete objects.
swift_delete_objects(request) Delete objects.
swift_download_container(request) Point a user to the container download runner.
swift_download_object(request) Point a user to a temporary pre-signed download URL.
swift_download_shared_object(request) Point a user to the shared download runner.
swift_get_batch_object_metadata(request) Batch get metadata for objects.
swift_get_metadata_container(request) Get metadata for a container.
swift_get_project_metadata(request) Get the bare minimum required project metadata from

Openstack.
swift_list_containers(request) Proxy Swift list buckets available to a project.
swift_list_objects(request) List objects in a given bucket or container.
swift_replicate_container(request) Point the user to container replication endpoint.
swift_update_container_metadata(request) Update metadata for a container.

9.3 swift_browser_ui.ui.discover

Endpoints for different server information discovery.

Functions

handle_discover(_) Reply with sharing information if sharing API is avail-
able.

24 Chapter 9. Python Modules

swift-browser-ui, Release 2.0.0

9.4 swift_browser_ui.ui.exceptions

The module containing all swift_browser_ui exceptions.

9.5 swift_browser_ui.ui.front

Web frontend functions for stand-alone running.

Functions

browse(_) Serve the browser SPA when running without a proxy.
index(request) Serve the index page when running without a proxy.
loginpassword(request) Serve the username and password login page.

9.6 swift_browser_ui.ui.login

A module for handling the project login related tasks.

Functions

credentials_login_end(request) Handle the login procedure with classic POST.
handle_login(request) Create new session cookie for the user.
handle_logout(request) Properly kill the session for the user.
login_with_token(request, token) Log in a session with token.
sso_query_begin(_) Display login page and initiate federated keystone au-

thentication.
sso_query_end(request) Handle the login procedure return from SSO or user

from POST.
test_token(formdata, request) Validate unscoped token.

9.7 swift_browser_ui.ui.middlewares

Middlewares for the swift-browser-ui.

Functions

check_session_at(request, handler) Raise on expired sessions.
error_middleware(request, handler) Return the correct HTTP Error page.
return_error_response(error_code) Return the correct error page with correct status code.

9.7. swift_browser_ui.ui.middlewares 25

swift-browser-ui, Release 2.0.0

9.8 swift_browser_ui.ui.misc_handlers

Handlers that can’t easily be categorized.

Functions

handle_bounce_direct_access_request(request) Redirect user to a correct access request page.

9.9 swift_browser_ui.ui.server

swift_browser_ui server related convenience functions.

Functions

kill_dload_client(app) Kill download proxy client session.
open_client_to_app(app) Open a client session for download proxies.
run_server_insecure(app) Run the server without https enabled.
run_server_secure(app, cert_file, cert_key) Run the server securely with a given ssl context.
servinit([inject_middleware]) Create an aiohttp server with the correct arguments and

routes.

9.10 swift_browser_ui.ui.settings

Module containing all of the settings required in the global scope.

The different configurations are also listed here:

auth_endpoint_url: The correct address for the relevant Openstack keystone
instance, to enable the authentication backend
Default: None

has_trust: Information on whether or not the backend has trust on
the specified endpoint, i.e. if the backend can use SSO
Default: False

swift_endpoint_url: The endpoint which the backend will use for OS Swift,
to query the object storage.
Default: None

logfile: The file in which the logs will be written into, if the
logfile is set.
Default: None

port: The port in which the server will answer from (this
option is only relevant if the server is run in a
standalone setup)
Default: 8080

verbose: Boolean value for increasing verbosity in the program
Default: False

debug: Set logging level to debug
(continues on next page)

26 Chapter 9. Python Modules

swift-browser-ui, Release 2.0.0

(continued from previous page)

Default: False
version: Contains the current version for e.g. logging
static_folder: Path to the folder that contains the static front-end

files, only used when the server is deployed without
a proxy like Nginx to host the static files, and handle
load balancing
Default: $PWD/swift_browser_ui_frontend

Functions

set_key(key, value, log_message) Set a key value if it's specified.

9.11 swift_browser_ui.ui.shell

CLI for configuring and launching the server.

Functions

main() Run the CLI.

9.12 swift_browser_ui.ui.signature

Module for handling queries for a valid Sharing/Request API signature.

Functions

handle_ext_token_create(request) Handle call for an API token create.
handle_ext_token_list(request) Handle call for listing API tokens.
handle_ext_token_remove(request) Handle call for an API token delete.
handle_signature_request(request) Handle call for an API call signature.

Container sharing backend for Openstack Swift.

swift_browser_ui.sharing.bindings.bind Async Python bindings for the swift-x-account-sharing
backend.

swift_browser_ui.sharing.api Sharing backend API specification and implementation.
swift_browser_ui.sharing.db Sharing backend database implementation.
swift_browser_ui.sharing.server Sharing backend server module.
swift_browser_ui.sharing.shared Global settings for the container sharing backend.

9.12. swift_browser_ui.ui.signature 27

swift-browser-ui, Release 2.0.0

9.13 swift_browser_ui.sharing.bindings.bind

Async Python bindings for the swift-x-account-sharing backend.

Classes

SwiftXAccountSharing(url) Swift X Account Sharing backend client.

9.14 swift_browser_ui.sharing.api

Sharing backend API specification and implementation.

Functions

access_details_handler(request) Handle access-details endpoint query.
delete_container_shares_handler(request) Delete all shares from a container.
delete_share_handler(request) Handle unshare-container endpoint query.
edit_share_handler(request) Handle container shared rights editions.
gave_access_handler(request) Handle gave-access endpoint query.
handle_health_check(request) Answer a service health check.
handle_user_add_token(request) Add a token to the user.
handle_user_delete_token(request) Delete a token from the user.
handle_user_list_tokens(request) Get project token listing.
has_access_handler(request) Handle has-access endpoint query.
share_container_handler(request) Handle share-container endpoint query.
shared_details_handler(request) Handle shared-details endpoint query.

9.15 swift_browser_ui.sharing.db

Sharing backend database implementation.

Classes

DBConn() Class for the account sharing database functionality.

28 Chapter 9. Python Modules

swift-browser-ui, Release 2.0.0

9.16 swift_browser_ui.sharing.server

Sharing backend server module.

Functions

init_server() Initialize the server.
main() Run the server with the default run function.
resume_on_start(app) Resume old instance from start.
run_server_devel(app) Run the server in development mode (without HTTPS).
save_on_shutdown(app) Flush the database on shutdown.

9.17 swift_browser_ui.sharing.shared

Global settings for the container sharing backend. Container access request backend for Openstack Swift.

swift_browser_ui.request.bindings.bind Async Python bindings for the swift-x-account-sharing
backend.

swift_browser_ui.request.api Module for share request API handlers.
swift_browser_ui.request.db Module for sharing request database interface using

postgres.
swift_browser_ui.request.server Share request backend module.

9.18 swift_browser_ui.request.bindings.bind

Async Python bindings for the swift-x-account-sharing backend.

Classes

SwiftSharingRequest(url) Swift Sharing Request backend client.

9.19 swift_browser_ui.request.api

Module for share request API handlers.

9.19. swift_browser_ui.request.api 29

swift-browser-ui, Release 2.0.0

Functions

handle_container_request_listing(request) Handle query for listing the container share requests.
handle_health_check(request) Answer a service health check.
handle_share_request_post(request) Handle query for posting a new share request.
handle_user_add_token(request) Add a token to the user.
handle_user_delete_token(request) Delete a token from the user.
handle_user_list_tokens(request) Get project token listing.
handle_user_made_request_listing(request) Handle query listing for the requests created by the user.
handle_user_owned_request_listing(request) Handle query for listing the requests owned by the user.
handle_user_share_request_delete(request) Delete container share request or requests.

9.20 swift_browser_ui.request.db

Module for sharing request database interface using postgres.

Classes

DBConn() Class for handling sharing request database connection.

9.21 swift_browser_ui.request.server

Share request backend module.

Functions

graceful_shutdown(app) Correctly close the service.
init_server() Initialize the sharing request server.
main() Run the server with the default run function.
resume_on_start(app) Resume old instance on start.
run_server_devel(app) Run the server in development mode (without HTTPS).

Runner for swift-browser-ui upload and replication operations.

swift_browser_ui.upload.api API handlers for swift-upload-runner.
swift_browser_ui.upload.auth Authorization handlers for swift-upload-runner.
swift_browser_ui.upload.common Common resources for swift-upload-runner.
swift_browser_ui.upload.download Server object and container download handlers using

aiohttp.
swift_browser_ui.upload.replicate Container and object replication handlers using aiohttp.
swift_browser_ui.upload.server Server initialization functions.
swift_browser_ui.upload.upload Server object upload handlers using aiohttp.

30 Chapter 9. Python Modules

swift-browser-ui, Release 2.0.0

9.22 swift_browser_ui.upload.api

API handlers for swift-upload-runner.

Functions

handle_get_container(request) Handle a request for getting container contents as an
archive.

handle_get_object(request) Handle a request for getting object content.
handle_get_object_chunk(request) Handle a request for checking if a chunk exists.
handle_health_check(request) Answer a service health check.
handle_post_object_chunk(request) Handle a request for posting an object chunk.
handle_post_object_options(_) Handle options request for posting the object chunk.
handle_replicate_container(request) Handle request to replicating a container from a source.
handle_replicate_object(request) Handle a request to replicating an object from a source.

9.23 swift_browser_ui.upload.auth

Authorization handlers for swift-upload-runner.

Functions

handle_login(request) Begin a new session for the upload process.
handle_validate_authentication(request, han-
dler)

Handle the authentication of a response as a middleware
function.

9.24 swift_browser_ui.upload.common

Common resources for swift-upload-runner.

Functions

generate_download_url(host[, container, ...]) Generate the download URL to use.
get_download_host(endpoint, project) Get the actual download host with shared container sup-

port.
get_path_from_list(to_parse, path_prefix) Parse a path from a list of path parts.
get_session_id(request) Return the session id from request.
get_upload_instance(request, pro, cont[, ...]) Return the specific upload proxy for the resumable up-

load.
parse_multipart_in(request) Parse the form headers into a dictionary and chunk data

as reader.

9.24. swift_browser_ui.upload.common 31

swift-browser-ui, Release 2.0.0

9.25 swift_browser_ui.upload.download

Server object and container download handlers using aiohttp.

Classes

ContainerArchiveDownloadProxy(session, ...) Class for downloading a whole container as an archive.
FileDownloadProxy(session[, chunk_size]) A class for a single proxied download.
TarInputWrapper(session, project, container, ...) Wrap the file download proxy for tar to treat as a binary

file.
TarQueueWrapper() Wrap queue.Queue class for tar to treat as a binary file.

9.26 swift_browser_ui.upload.replicate

Container and object replication handlers using aiohttp.

Classes

ObjectReplicationProxy(session, client, ...) A class for replicating objects.

9.27 swift_browser_ui.upload.server

Server initialization functions.

Functions

kill_client(app) Kill the app client session.
main()

.

run_server(app) Run the server.
servinit() Create an aiohttp server for handling the upload runner

API.

32 Chapter 9. Python Modules

swift-browser-ui, Release 2.0.0

9.28 swift_browser_ui.upload.upload

Server object upload handlers using aiohttp.

Classes

ResumableFileUploadProxy(session, query, ...) A class for a single proxied upload.

genindex | modindex

9.28. swift_browser_ui.upload.upload 33

swift-browser-ui, Release 2.0.0

34 Chapter 9. Python Modules

CHAPTER

TEN

TESTING

Note: Unit tests and integration tests are automatically executed with every PR

10.1 Unit Testing

In order to run the unit tests, security checks with bandit, Sphinx documentation check for links consistency and HTML
output and flake8 (coding style guide) tox. To run the unit tests and UI tests in parallel use:

$ tox -p auto

To run environments seprately use:

$ # list environments
$ tox -l
$ # run flake8
$ tox -e flake8
$ # run bandit
$ tox -e bandit
$ # run docs
$ tox -e docs

10.2 User Interface Testing

User Interface tests are developed using cypress, and the tests are developed for both Firefox and Chrome web browsers.

$ cd swift_browser_ui_frontend/
$ npm install
$ npm run build
$ cd ..
$ npm install cypress
$ npx cypress open

35

https://github.com/PyCQA/bandit
http://flake8.pycqa.org/en/latest/
http://tox.readthedocs.io/
https://www.cypress.io/

swift-browser-ui, Release 2.0.0

36 Chapter 10. Testing

CHAPTER

ELEVEN

TOOLS USED IN PROJECT

11.1 Backend

The backend is written in Python, requiring at minimum Python version 3.6.8, but is tested with 3.7 and 3.8 as well.
Additionally the following libraries are used in the program development:

• aiohttp for the API server

• uvloop for increasing server performance

• keystoneauth1 for authenticating with Openstack

• python-swiftclient for communicating with Openstack Swift API

• cryptography for encrypting session cookies

• click for quickly providing a CLI for the server

11.2 Frontend

The frontend is written as an SPA (Single Page Application), in ES6 Javascript. The frontend code is not tested for
cross-compilation to ES5. The following libraries are used in writing the frontend:

• Vue.js for site functionality and DOM manipulation

• Vue router for site routing support

• Vue i18n for language support

• Buefy for site styling and components

• Buefy also comes with bulma for css framework

• Lodash for mostly debouncing functions to improve responsivity

37

https://aiohttp.readthedocs.io/en/stable/
https://uvloop.readthedocs.io/
https://docs.openstack.org/keystoneauth/latest/
https://docs.openstack.org/python-swiftclient/latest/
https://docs.openstack.org/python-swiftclient/latest/
https://click.palletsprojects.com/en/7.x/
https://vuejs.org/
https://router.vuejs.org/
https://router.vuejs.org/
https://buefy.org/
https://bulma.io/
https://lodash.com/

swift-browser-ui, Release 2.0.0

11.3 Tests

Tests are written to be run with Pytest. The following libraries are used in writing the tests:

• tox for test automation

• cypress for UI test automation

• pytest-timeout for timing out UI tests, which can hang when failing

UI tests also require the WebDrivers for Chrome and Firefox, if tests are to be run locally.

• WebDriver for Chrome

• WebDriver for Firefox

11.4 Documentation

The documentation is automatically built with sphinx

11.4.1 Charts

The charts in documentation are made with Dia. The program is old fashioned, but versatile and can be installed without
adding repositories, with the added benefit of not requiring the use of browser tools for making the charts. Charts are
located in docs/charts, and the exported vector graphics file is linked into the documentation image directory.

Note: swift-browser-ui and all it sources are released under MIT License.

38 Chapter 11. Tools used in project

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/
https://www.cypress.io/
https://pypi.org/project/pytest-timeout/1.2.1/
https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver/releases
http://www.sphinx-doc.org/en/master/
http://dia-installer.de/doc/en/index.html

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

39

swift-browser-ui, Release 2.0.0

40 Chapter 12. Indices and tables

PYTHON MODULE INDEX

s
swift_browser_ui.request, 29
swift_browser_ui.request.api, 29
swift_browser_ui.request.bindings.bind, 29
swift_browser_ui.request.db, 30
swift_browser_ui.request.server, 30
swift_browser_ui.sharing, 27
swift_browser_ui.sharing.api, 28
swift_browser_ui.sharing.bindings.bind, 28
swift_browser_ui.sharing.db, 28
swift_browser_ui.sharing.server, 29
swift_browser_ui.sharing.shared, 29
swift_browser_ui.ui, 23
swift_browser_ui.ui._convenience, 23
swift_browser_ui.ui.api, 24
swift_browser_ui.ui.discover, 24
swift_browser_ui.ui.exceptions, 25
swift_browser_ui.ui.front, 25
swift_browser_ui.ui.login, 25
swift_browser_ui.ui.middlewares, 25
swift_browser_ui.ui.misc_handlers, 26
swift_browser_ui.ui.server, 26
swift_browser_ui.ui.settings, 26
swift_browser_ui.ui.shell, 27
swift_browser_ui.ui.signature, 27
swift_browser_ui.upload, 30
swift_browser_ui.upload.api, 31
swift_browser_ui.upload.auth, 31
swift_browser_ui.upload.common, 31
swift_browser_ui.upload.download, 32
swift_browser_ui.upload.replicate, 32
swift_browser_ui.upload.server, 32
swift_browser_ui.upload.upload, 33

41

swift-browser-ui, Release 2.0.0

42 Python Module Index

INDEX

M
module

swift_browser_ui.request, 29
swift_browser_ui.request.api, 29
swift_browser_ui.request.bindings.bind,

29
swift_browser_ui.request.db, 30
swift_browser_ui.request.server, 30
swift_browser_ui.sharing, 27
swift_browser_ui.sharing.api, 28
swift_browser_ui.sharing.bindings.bind,

28
swift_browser_ui.sharing.db, 28
swift_browser_ui.sharing.server, 29
swift_browser_ui.sharing.shared, 29
swift_browser_ui.ui, 23
swift_browser_ui.ui._convenience, 23
swift_browser_ui.ui.api, 24
swift_browser_ui.ui.discover, 24
swift_browser_ui.ui.exceptions, 25
swift_browser_ui.ui.front, 25
swift_browser_ui.ui.login, 25
swift_browser_ui.ui.middlewares, 25
swift_browser_ui.ui.misc_handlers, 26
swift_browser_ui.ui.server, 26
swift_browser_ui.ui.settings, 26
swift_browser_ui.ui.shell, 27
swift_browser_ui.ui.signature, 27
swift_browser_ui.upload, 30
swift_browser_ui.upload.api, 31
swift_browser_ui.upload.auth, 31
swift_browser_ui.upload.common, 31
swift_browser_ui.upload.download, 32
swift_browser_ui.upload.replicate, 32
swift_browser_ui.upload.server, 32
swift_browser_ui.upload.upload, 33

S
swift_browser_ui.request

module, 29
swift_browser_ui.request.api
module, 29

swift_browser_ui.request.bindings.bind
module, 29

swift_browser_ui.request.db
module, 30

swift_browser_ui.request.server
module, 30

swift_browser_ui.sharing
module, 27

swift_browser_ui.sharing.api
module, 28

swift_browser_ui.sharing.bindings.bind
module, 28

swift_browser_ui.sharing.db
module, 28

swift_browser_ui.sharing.server
module, 29

swift_browser_ui.sharing.shared
module, 29

swift_browser_ui.ui
module, 23

swift_browser_ui.ui._convenience
module, 23

swift_browser_ui.ui.api
module, 24

swift_browser_ui.ui.discover
module, 24

swift_browser_ui.ui.exceptions
module, 25

swift_browser_ui.ui.front
module, 25

swift_browser_ui.ui.login
module, 25

swift_browser_ui.ui.middlewares
module, 25

swift_browser_ui.ui.misc_handlers
module, 26

swift_browser_ui.ui.server
module, 26

swift_browser_ui.ui.settings
module, 26

swift_browser_ui.ui.shell
module, 27

43

swift-browser-ui, Release 2.0.0

swift_browser_ui.ui.signature
module, 27

swift_browser_ui.upload
module, 30

swift_browser_ui.upload.api
module, 31

swift_browser_ui.upload.auth
module, 31

swift_browser_ui.upload.common
module, 31

swift_browser_ui.upload.download
module, 32

swift_browser_ui.upload.replicate
module, 32

swift_browser_ui.upload.server
module, 32

swift_browser_ui.upload.upload
module, 33

44 Index

	Setup Instructions
	Environment Setup
	Example environment variable files
	Setting up TLS termination proxy

	Scaling up the service
	Further reading and citations

	Getting started
	Command line interface
	Global arguments
	The server startup

	Deployment
	Dockerfile
	Database for sharing functionality
	Sharing functionality back-end
	Shared access request back-end
	Upload runner back-end
	Kubernetes Integration

	Architecture
	About login process
	API

	Web User Interface
	User information page
	Container page
	Object page
	Non-whitelisted mode

	Sharing functionality
	Sharing a container
	Viewing containers shared from the project
	Viewing containers shared to the project

	Shared access requests
	Upload runnner
	File Upload
	File Download
	Container Download
	Copying a container

	Python Modules
	swift_browser_ui.ui._convenience
	swift_browser_ui.ui.api
	swift_browser_ui.ui.discover
	swift_browser_ui.ui.exceptions
	swift_browser_ui.ui.front
	swift_browser_ui.ui.login
	swift_browser_ui.ui.middlewares
	swift_browser_ui.ui.misc_handlers
	swift_browser_ui.ui.server
	swift_browser_ui.ui.settings
	swift_browser_ui.ui.shell
	swift_browser_ui.ui.signature
	swift_browser_ui.sharing.bindings.bind
	swift_browser_ui.sharing.api
	swift_browser_ui.sharing.db
	swift_browser_ui.sharing.server
	swift_browser_ui.sharing.shared
	swift_browser_ui.request.bindings.bind
	swift_browser_ui.request.api
	swift_browser_ui.request.db
	swift_browser_ui.request.server
	swift_browser_ui.upload.api
	swift_browser_ui.upload.auth
	swift_browser_ui.upload.common
	swift_browser_ui.upload.download
	swift_browser_ui.upload.replicate
	swift_browser_ui.upload.server
	swift_browser_ui.upload.upload

	Testing
	Unit Testing
	User Interface Testing

	Tools used in project
	Backend
	Frontend
	Tests
	Documentation
	Charts

	Indices and tables
	Python Module Index
	Index

